指针生成网络在自然语言生成任务上表现出不错的性能,本文主要介绍的是自动生成KG中entity的描述生成任务,目标是对于输入的(来自KG)的entity及其属性(属性可以分为多种类型的slot)生成对应的自然语言文本描述。为了更加准确的利用自然语言生成过程中的copy机制(何时以及在什么位置copy源语言的内容),作者提出了一种可适应的指针生成网络模型KG2TEXT,在Person与Animal(来自WikiData,由Wang et al.提出的一种用于KG描述生成的数据集)的实验结果表明,该模型的性能达到了目前最优。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢