图神经网络与因果推理是当下大家关注的焦点,GNN有强大的图结构建模表达能力,因果推理旨在探究因果关系结构,如何将两者联系起来是一个挑战性的问题?来自TU&DeepMind的研究人员将这两者做了研究,建立基于GNN的因果推理。

因果性可以用结构因果模型(SCM)来描述,该模型承载了有关兴趣变量及其机械关系的信息。对于大多数感兴趣的过程来说,底层的SCM将只是部分可见的,因此因果推理试图利用任何观察的信息。图神经网络(GNN)作为结构化输入的通用逼近器,为因果学习提供了一个可行的候选者,建议与SCM更紧密的集成。

为此,我们提出了从第一原理出发的理论分析,在GNN和SCM之间建立了新的联系,同时提供了一般神经因果模型的扩展观点。然后我们建立了一个新的基于GNN的因果推理模型类,该模型类是因果效应识别的必要和充分条件。我们对模拟和标准基准的实证说明验证了我们的理论证明。

论文地址:https://www.zhuanzhi.ai/paper/8c09c90940b1603f6d6dbce7335df3fc

内容中包含的图片若涉及版权问题,请及时与我们联系删除