随着互联网时代的兴起,图片的版权保护得到了广泛的关注;为了声明图片的所有权,人们设计了各式各样的水印图片并以一定的透明度加注到原始图片中。然而,加注水印的图片也会存在一定的风险,即水印可以被图像还原工具去除。
本文介绍实验室被ACM MM2021接受的一篇水印去除论文,基于深度学习去除图像水印,有效提升去除效果。
本文提出了自纠正的水印检测模块(Self-calibrated Mask Refinement),掩膜指引的背景修复模块,多层次信息融合的背景改进模块,整体框架如下图所示。整体框架可以分为背景粗修阶段,以及背景精修阶段。在图像粗修阶段,可以看到,网络由传统的UNet框架演变而来,为了兼顾模型大小以及多任务的需求,我们采用了共享编码器以及一层共享解码器的主干网络,对于水印掩膜检测以及背景修复任务,我们采用了不同的解码器分支实现不同的功能。在图像精修阶段,我们将预测的水印掩膜以及粗修图片放置一起作为输入,并引入了跨阶段的特征融合、跨尺度特征融合,以此提高精修阶段的图像修复质量。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢