论文链接:https://arxiv.org/pdf/2109.06705.pdf
个人主页:https://zlh-source.github.io/
导师主页:http://faculty.neu.edu.cn/renfeiliang
基于表填充的关系三元组抽取方法由于其良好的性能和从句子中提取复杂三元组的优秀能力而受到越来越多的研究者关注。然而,这类方法远远没有发挥其全部潜力,因为它们大多只关注局部特征,而忽略了三元组间的全局关联,这使得模型在三元组抽取过程中会忽略某些重要信息。为了克服这一缺陷,我们提出了一种基于全局特征的关系三元组抽取模型,该模型可以充分捕获三元组间的全局特征。
具体而言,我们首先为每个关系生成一个与之对应的表特征。接着,我们将从这些表特征中挖掘关系间的全局交互特征、以及token pairs之间的全局交互特征。下一步,这两类全局交互特征将进一步融合到各个关系对应的表特征中。以上“生成—挖掘—融合”的过程会执行多次,以便使每个关系对应的表特征逐步精细化。最后,根据这些表特征,我们可以对每个关系对应的表进行填充,并根据填充结果而得到具有相应关系的各个三元组结果。我们在多个benchmark数据集上对相应方法进行了评估,实验结果显示,我们方法的结果明显优于多个最新三元组抽取方法。
图1.模型结构图
论文使用NYT29,NYT24和WebNLG数据集进行性能测试。整体实验结果和消融实验结果如表1所示。结果显示,相较于之前的最佳三元组抽取模型,本文提出模型的性能在三个数据集上均有明显提升。其中,在WebNLG上的提升幅度最为明显,我们认为,这主要是因为WebNLG数据集中包含更多种关系,这也意味着三元组之间的全局特征也更多。因而,该数据集可以使我们的方法发挥更大功效。
表1.整体实验及消融实验结果
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢