深度学习依赖于大量数据,但对于长尾类别来说,数据样本较为稀缺。为此,深度长尾学习从大量遵循长尾类分布的图像中训练出性能良好的深度模型,得到大量研究。来自NUS颜水成等学者发布了首篇《深度长尾学习》综述论文,值的关注!

论文链接:https://arxiv.org/abs/2110.04596

摘要

深度长尾学习是视觉识别中最具挑战性的问题之一,其目标是从大量遵循长尾类分布的图像中训练出性能良好的深度模型。在过去的十年中,深度学习已经成为一种学习高质量图像表示的强大的识别模型,并导致了一般视觉识别的显著突破。然而,长尾类不平衡是实际视觉识别任务中普遍存在的问题,这种不平衡往往限制了基于深度网络的识别模型在实际应用中的实用性,因为长尾类容易偏向主导类,在尾类上的表现较差。为了解决这一问题,近年来人们进行了大量的研究,在深度长尾学习领域取得了可喜的进展。鉴于该领域的快速发展,本文对深度长尾学习的最新进展进行了综述。具体地说,我们将已有的深度长尾学习研究分为三类(即类重平衡、信息增强和模块改进),并根据这三类对这些方法进行了详细的回顾。之后,我们通过一种新提出的评价指标,即相对准确性,来评估它们在多大程度上解决了阶级失衡问题,从而对几种最先进的方法进行了实证分析。最后,我们强调了深度长尾学习的重要应用,并确定了未来研究的几个有前景的方向。

这项综述的主要贡献如下: 

• 据我们所知,这是第一次对深度长尾学习的全面调研,将为研究人员和社区提供对深度神经网络的长尾视觉学习的更好理解。 

• 我们提供了对高级长尾学习研究的深入回顾,并通过一个新的相对准确性度量来评估它们在多大程度上处理长尾类别失衡,以实证研究最先进的方法。 

• 我们为未来的研究确定了四个潜在的方法创新方向以及八个新的深度长尾学习任务设置。