随着对比学习(Contrastive Learning)在 CV、NLP 等领域大放异彩,其研究热度近年来也逐步走高。在图学习领域,由于图(Graph)数据也存在缺少标签或难以标注的问题,自 2020 年来,研究者们也着力于将对比学习技术应用于图表示学习任务上,取得了十分不错的效果,这一系列算法研究称为图对比学习(Graph Contrastive Learning)。由于图是一种离散的数据结构,且一些常见的图学习任务中,数据之间往往存在紧密的关联(如链接预测)。如何针对这些特性设计图对比学习算法、对比学习又是如何更好地帮助学习图表示、节点表示的,这些问题仍在积极地探索中。

本文将主要基于 2020-2021 年已发表的顶会论文(ICML、ICLR、NeurIPS、KDD、WWW、IJCAI),介绍图对比学习算法的一般流程,并总结当今图对比学习的若干研究趋势。希望本文能帮助研究者们快速了解对图对比学习相关研究进展,并欢迎大家在评论区讨论及指出文章的疏漏错误等。章节 1-4 主要概述图对比学习 2020 年的工作,而对于熟悉 GraphCL 等基础的图对比学习算法的读者,可以直接跳到章节 5 阅读 2021 年的新研究进展总结。

内容中包含的图片若涉及版权问题,请及时与我们联系删除