神经网络尽快在很多领域上效果很好,但是其是“黑盒模型”,无法对预测结果给出解释。图神经网络也有类似的问题。很多论文尝试找出“最有信息量”的节点,边,子图来对图神经网络的预测进行解释,如下图。
感谢Dongsheng Luo同学分类整理了一系列GNN可解释的论文awesome-graph-explainability-papers,如下所示:
-
最有影响力的论文 -
最新SOTA论文 -
2021年论文 -
2020年论文
链接:https://github.com/flyingdoog/awesome-graph-explainability-papers/blob/main/README.md
对GNN解释性感兴趣的,也可以看看下面的论文解读。
Most Influential
-
Explainability in graph neural networks: A taxonomic survey. Yuan Hao, Yu Haiyang, Gui Shurui, Ji Shuiwang. ARXIV 2020.
-
Gnnexplainer: Generating explanations for graph neural networks. Ying Rex, Bourgeois Dylan, You Jiaxuan, Zitnik Marinka, Leskovec Jure. NeurIPS 2019.
-
Explainability methods for graph convolutional neural networks. Pope Phillip E, Kolouri Soheil, Rostami Mohammad, Martin Charles E, Hoffmann Heiko. CVPR 2019.
-
Parameterized Explainer for Graph Neural Network. Luo Dongsheng, Cheng Wei, Xu Dongkuan, Yu Wenchao, Zong Bo, Chen Haifeng, Zhang Xiang. NeurIPS 2020.
-
Xgnn: Towards model-level explanations of graph neural networks. Yuan Hao, Tang Jiliang, Hu Xia, Ji Shuiwang. KDD 2020.
-
Evaluating Attribution for Graph Neural Networks. Sanchez-Lengeling Benjamin, Wei Jennifer, Lee Brian, Reif Emily, Wang Peter, Qian Wesley, McCloskey Kevin, Colwell Lucy, Wiltschko Alexander. NeurIPS 2020.
-
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. Vu Minh, Thai My T.. NeurIPS 2020.
-
On Explainability of Graph Neural Networks via Subgraph Explorations. Yuan Hao, Yu Haiyang, Wang Jie, Li Kang, Ji Shuiwang. ICML 2021.
Recent SOTA
-
Counterfactual Supporting Facts Extraction for Explainable Medical Record Based Diagnosis with Graph Network. Wu Haoran, Chen Wei, Xu Shuang, Xu Bo. NAACL 2021. -
When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods. Faber Lukas, K. Moghaddam Amin, Wattenhofer Roger. KDD 2021. -
Counterfactual Graphs for Explainable Classification of Brain Networks. Abrate Carlo, Bonchi Francesco. Proceedings of the th ACM SIGKDD Conference on Knowledge Discovery Data Mining KDD 2021. -
Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs. Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. International Conference on Learning Representations ICLR 2021. -
Generative Causal Explanations for Graph Neural Networks. Lin Wanyu, Lan Hao, Li Baochun. Proceedings of the th International Conference on Machine Learning ICML 2021. -
Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity. Henderson Ryan, Clevert Djork-Arné, Montanari Floriane. Proceedings of the th International Conference on Machine Learning ICML 2021. -
Explainable Automated Graph Representation Learning with Hyperparameter Importance. Wang Xin, Fan Shuyi, Kuang Kun, Zhu Wenwu. ICML 2021. -
Higher-order explanations of graph neural networks via relevant walks. Schnake Thomas, Eberle Oliver, Lederer Jonas, Nakajima Shinichi, Schütt Kristof T, Müller Klaus-Robert, Montavon Grégoire. arXiv preprint arXiv:2006.03589 2020. -
HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media. Chen, Hsin-Yu and Li, Cheng-Te. EMNLP 2020.
Year 2021
-
[TPAMI 21] Higher-Order Explanations of Graph Neural Networks via Relevant Walks [paper]
-
[OpenReview 21] FlowX: Towards Explainable Graph Neural Networks via Message Flows [paper]
-
[OpenReview 21] Interpreting Graph Neural Networks via Unrevealed Causal Learning [paper]
-
[OpenReview 21] Explainable GNN-Based Models over Knowledge Graphs
-
[CIKM 2021] Towards Self-Explainable Graph Neural Network [paper]
-
[ECML PKDD 2021] GraphSVX: Shapley Value Explanations for Graph Neural Networks [paper]
-
[IJCNN 21] MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks [paper]
-
[KDD workshop 21] CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks [paper]
更多论文请去Git里查看。
Year 2020
-
[OpenReview 20] A Framework For Differentiable Discovery Of Graph Algorithms -
[OpenReview 20] Causal Screening to Interpret Graph Neural Networks
更多论文请去Git里查看。
评论
沙发等你来抢