
论文链接:https://arxiv.org/pdf/1912.06319.pdf
在各种环境中应用目标检测算法有很多局限性。特别是检测小目标仍然具有挑战性,因为它们分辨率低,信息有限。有研究员提出了一种利用上下文的目标检测方法来提高检测小目标的精度。该方法通过连接多尺度特征,使用了来自不同层的附加特征作为上下文。研究员还提出了具有注意机制的目标检测,它可以关注图像中的目标,并可以包括来自目标层的上下文信息。实验结果表明,该方法在检测小目标方面的精度高于传统的SSD框架。
新框架将从基线SSD开始讨论,然后是研究者提出的提高小目标检测精度的组件。首先,SSD与特征融合,以获取上下文信息,名为F-SSD;第二,带有保留模块的SSD,使网络能够关注重要部件,名为A-SSD;第三,研究者结合了特征融合和注意力模块,名为FA-SSD。

内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢