地址链接:https://arxiv.org/abs/2110.13713
目标检测模型的性能在模型精度和效率两个主要方面得到了快速的发展。然而,为了将基于深度神经网络(DNN)的目标检测模型部署到边缘设备,通常需要对模型进行比较大的压缩,但是与之而来的也降低了模型的准确性。
在本文中,作者根据现有先进方法中各种特征尺度之间缺少的组合连接的问题,提出了一种新的边缘GPU友好模块,用于多尺度特征交互。此外,作者提出了一种新的迁移学习backbone采用的灵感是来自不同任务的转换信息流的变化,旨在补充特征交互模块,并提高准确性和推理速度的各种边缘GPU设备上的可用性。
例如,基于MobileNetV2-0.75 Backbone的YOLO-ReT在Jetson Nano上实时运行,在Pascal VOC上实现了68.75 mAP/33.19FPS(MobileNetV2为68.67 mAP/28.16FPS),在COCO上实现了34.91 mAP/33.19FPS。
此外,在YOLOv4-tiny和YOLOv4-tiny中引入本文的多尺度特征交互模块,使其在COCO上的性能分别提高到41.5和48.1 mAP,比原始版本提高了1.3mAP和0.9mAP。

 

本文主要贡献:

 

  1. 提出了RFCR模块,有效结合多尺度特征,兼容各种Backbone和检测头。此外,RFCR模块的特征收集与检测头的输出尺度数无关,便于更好的特征交互;
  2. 对个体迁移学习层的重要性进行广泛的实验分析,并采用截断方法提高模型效率。截断和RFCR模块相互补充,允许创建更快、更准确的检测模型;
  3. 针对边缘gpu的设备上执行延迟实验的深入消融研究,而不是其他间接指标,如MFLOPs或模型大小,从而提供各种竞争设计的准确比较。