OpenKG地址:http://openkg.cn/dataset/ckgg
GitHub地址:https://github.com/nju-websoft/CKGG
数据地址:https://doi.org/10.5281/zenodo.4668711
论文地址:https://doi.org/10.1007/978-3-030-88361-4_25
开放许可协议:CC BY-SA 4.0
贡献者:南京大学(沈俞霖,陈子恒,程龚,瞿裕忠)
使用人工智能技术解答学业测验的题目是人工智能和知识工程领域的一个长期挑战。我们长期研究使用人工智能技术构建问答系统解答中国高中教育中的地理学科的题目。从此项研究中,我们发现,现有的开放数据中,仍缺乏可以覆盖高中阶段核心地理知识的高质量知识图谱。
在高中地理科目的应用上,现有的地理主题的知识图谱不够完整、准确。例如,GeoNames 仅涵盖地点位置和行政区划等基本地理数据。Clinga 从百度百科中提取了气候等丰富的地理数据,但受制于在线数据缺乏统一的验证,提取的数据准确性不高,并多存在分类标准不一致等情况。
虽然相关的知识图谱较为缺乏,高质量的地理数据仍在网络上广泛存在。例如,Berkeley Earth 提供了全球温度的数据, GES DISC 提供了全球降水量的数据。然而这些数据均以数据网格的格式提供,为了便于查询,我们需要将这些数据关联到具体的地点实体。此外,还存在一些以图片、表格格式存储的数据,均需将其关联到地点实体并转换为便于的格式。整合这些异构数据需要使用复杂的方法。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢