最近,有许多朋友都在关注缺陷检测领域,今天来看看缺陷检测。
目前, 基于机器视觉的表面 缺陷装备已经在各工业领域广泛替代人工肉眼检测,包括3C、汽车、家电、机械制造、半导体及电子、化工、医药、航空航天、轻工等行业。传统的基于机器 视觉的表面缺陷检测方法,往往采用常规图像处理 算法或人工设计特征加分类器方式。一般来说,通常利用被检表面或缺陷的不同性质进行成像方案的设计,合理的成像方案有助于获得光照均匀的图像,并将物体表面缺陷明显的体现出来。近年来,不少基于深度学习的缺陷检测方法也被广泛应用在各种工业场景中。
对比计算机视觉中明确的分 类、检测和分割任务, 缺陷检测的需求非常笼统. 实 际上, 其需求可以划分为三个不同的层次: “缺陷是什么”(分类)、“缺陷在哪里”(定位)和“缺陷是多少”(分割)。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢