最近对比学习(Contrastive Learning, CL)火得一塌糊涂,被Bengio 和 LeCun 这二位巨头在 ICLR 2020 上点名是 AI 的未来。作为普通打工人,对比学习能否带来AI质的飞越,从而导致未来出现终结者,不是我们考虑的问题。本文只聚焦于推荐领域,讨论对比学习能否提升推荐性能,帮我们早点完成OKR。

本文并非Contrastive Learning Tutorial之类的科普文章,不会讲述对比学习的发展沿革,也不会面面俱到每个技术细节。对这部分内部感兴趣的同学,可以参考张俊林大佬的《对比学习(Contrastive Learning):研究进展精要》一文,快速入门。

接下来,本文将从以下三个方面展开:

  • 讨论一下对比学习到底是什么。这一节的目的,并非为了吊书袋,我也不是什么考据狂。实在是对比学习和我们推荐常用的向量化召回,在很多底层技术上是通用的。而有一批水文,利用了这二者之间的相似性,将向量化召回算法用“对比学习”的概念重新包装,挂羊头卖狗肉,使很多同学觉得CL不过是新一波的概念炒作。
  • 谈谈对比学习到底能给推荐系统带来哪些帮助。同学们不要对新技术盲目跟风,看完这一节,再来决定CL是否是解决你问题的那根稻草。
  • 分析“对比学习在推荐系统中应用”的两篇典型论文。正如前面提到的,这方面的好文章并不多。很多跟风灌水之作,看标题上写着“对比学习”和“推荐”,下载下来一看,才发现不过是讲向量化召回的老生常谈。

内容中包含的图片若涉及版权问题,请及时与我们联系删除