论文标题:AdaDM: Enabling Normalization for Image Super-Resolution

论文链接:https://arxiv.org/abs/2111.13905

规范化技术(如BN)是CNN领域非常重要的技术,有助于加速训练、提升泛化精度。然而,在图像超分领域,规范化技术会降低特征的灵活性,故被EDSR之后各大超分方案剔除在外。本文从定量与定性角度对该现象进行了分析并发现:残差特征的标准差经规范化后会大幅收缩,进而导致超分性能的退化。标准差能够反映像素值的变化量,当方差变小时,图像的边缘特征的辨别能力进一步降低。为解决该问题,本文提出了一种AdaDM(Adaptive Deviation Modulator),它可以自适应调整像素方差。为更好的泛化性,我们将BN与AdaDM嵌入到已有超分中。我们发现:AdaDM的自适应方差幅值调整策略使得边缘特征更具判别力,进而导致带BN与AdaDM的超分模型取得了更高的性能。

内容中包含的图片若涉及版权问题,请及时与我们联系删除