本文将围绕近四年来发表在顶级会议(NeurIPS、SIGIR、KDD、EMNLP、WSDM、COLING)上的 9 篇代表性工作介绍对话推荐系统领域的问题定义、处理方案和结构演化。另外笔者整理了近年来该领域 68 篇研究工作及其代码和数据集附在文末,分享给读者学习参考。
本文目录如下:
-
引言 -
对话推荐概述 -
整体架构 -
发展现状 -
基于属性的对话推荐 -
问题定义 -
单轮场景 - CRM -
多轮场景 - EAR -
搜索剪枝 - CPR -
统一架构 - UNICORN -
生成式对话推荐 -
问题定义 -
降噪协同 - ReDial -
知识增强 - KBRD -
语义融合 - KGSF -
话题引导 - TGReDial -
可控生成 - NTRD -
总结 -
未来展望 -
论文总结
参考文献
[1]. Advances and Challenges in Conversational Recommender Systems: A Survey.
[2]. Conversational Recommender System.
[3]. Estimation–Action–Reflection: Towards Deep Interaction Between Conversational and Recommender Systems.
[4]. Interactive Path Reasoning on Graph for Conversational Recommendation.
[5]. Unified Conversational Recommendation Policy Learning via Graph-based Reinforcement Learning.
[6]. Towards Deep Conversational Recommendations.
[7]. Towards Knowledge-Based Recommender Dialog System.
[8]. Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion.
[9]. Towards Topic-Guided Conversational Recommender System.
[10]. Learning Neural Templates for Recommender Dialogue System.
[11]. CRSLab: An Open-Source Toolkit for Building Conversational Recommender System.
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢