如何挖掘语言资源中丰富的复述模板,是复述研究中的一项重要任务。已有方法在人工给定种子实体对的基础上,利用实体关系,通过自举迭代方式,从开放域获取复述模板,规避对平行语料或可比语料的依赖,但是该方法需人工给定实体对,实体关系受限;在迭代过程中语义会发生偏移,影响获取质量。针对这些问题,我们考虑知识库中包含描述特定语义关系的实体对(即关系三元组),提出融合外部知识的开放域 复述模板自动获取方法。首先,将关系三元组与开放域文本对齐,获取关系对应文本,并将文本中语义丰富部分泛化成变量槽,获取关系模板;接着设计模板表示方法,本文利用预训练语言模型,在模板表示中融合变量槽语义;最后,根据获得的模板表示,设计自动聚类与筛选方法,获取高精度的复述模板。在融合自动评测与人工评测的评价方法下,实验结果表明,本文提出的方法实现了在开放域数据上复述模板的自动泛化与获取,能够获得质量高、语义一致的复述模板。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢