「深度神经网络非常难以训练,我们提出的残差网络框架使得神经网络的训练变得容易很多。」文章摘要的开头如今已被无数研究者们细细读过。
这是一篇计算机视觉领域的经典论文。李沐曾经说过,假设你在使用卷积神经网络,有一半的可能性就是在使用 ResNet 或它的变种。
前几天,人们发现 ResNet 论文被引用数量悄然突破了 10 万加,距离论文的提交刚过去六年。
《Deep Residual Learning for Image Recognition》在 2016 年拿下了计算机视觉顶级会议 CVPR 的最佳论文奖,相比 NeurIPS 最高热度论文《Attention is All You Need》,ResNet 的被引数多出了几倍。这一工作的热度如此之高,不仅是因为 ResNet 本身的久经考验,也验证了 AI 领域,特别是计算机视觉如今的火热程度。
论文链接:https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢