随着这两年 GNN 的发展,其对于关系的建模特性也被引入了多目标跟踪领域,这次我通过对这两年基于 GNN 的 MOT 算法的介绍来分析其特点。

论文标题: Graph Neural Based End-to-end Data Association Framework for Online Multiple-Object Tracking 论文来源:CVPR 2020 论文链接:https://arxiv.org/abs/1907.05315 代码链接:https://github.com/peizhaoli05/EDA_GNN

论文标题:Deep association: End-to-end graph-based learning for multiple object tracking with conv-graph neural network 论文来源:ICMR 2019 论文链接:https://dl.acm.org/doi/pdf/10.1145/3323873.3325010

论文标题:Graph Networks for Multiple Object Tracking 论文来源:WACV 2020 论文链接:http://openaccess.thecvf.com/content_WACV_2020/papers/Li_Graph_Networks_for_Multiple_Object_Tracking_WACV_2020_paper.pdf 代码链接:https://github.com/yinizhizhu/GNMOT

论文标题:Learning a Neural Solver for Multiple Object Tracking 论文来源:CVPR 2020 论文链接:https://arxiv.org/abs/1912.07515 代码链接:https://github.com/selflein/GraphNN-Multi-Object-Tracking

论文标题:Graph Neural Network for 3D Multi-Object Tracking with Multi-Feature Learning 论文来源:CVPR 2020 论文链接:https://arxiv.org/abs/2006.07327 代码链接:https://github.com/xinshuoweng/GNN3DMOT

论文标题:Joint 3D Tracking and Forecasting with Graph Neural Network and Diversity Sampling 论文链接:https://arxiv.org/abs/2003.07847 代码链接:https://github.com/xinshuoweng/GNNTrkForecast

内容中包含的图片若涉及版权问题,请及时与我们联系删除