本文主要介绍我们在ICDM‘2021发表的工作,ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network。

Paper: https://arxiv.org/pdf/2110.07888.pdf
Code: https://github.com/RingBDStack/ACE-HGNN

图神经网络(GNNs)在各种图数据挖掘任务中得到了广泛的研究,但是大多数现有的工作都是基于欧式空间嵌入,难以自然的捕捉图数据的非欧式结构。因此,近年来一些基于非欧几何空间的工作在机器学习领域快速增长,其中双曲几何空间的图神经网络(Hyperbolic Graph Neural Networks,HGNNs)将GNNs扩展到双曲空间,从而在节点表示学习中更有效地捕捉图的树状/层次结构。然而现实中复杂多样拓扑结构的图数据,HGNNs对于具有异质拓扑结构的图数据往往性能不佳。为了能够为HGNNs自适应的探索到合适的双曲嵌入空间,我们首次引入了强化学习的学习框架到HGNNs中,提出了ACE-HGNN自适应曲率探索的双曲图神经网络,根据输入图和下游任务自适应学习最优曲率。我们将曲率的探索和图的表征学习视作一个同时进行的多目标优化问题,使用多智能体强化学习(MARL)分别设计用于学习曲率和节点表示的ACE-Agent和HGNN-Agent,并通过Nash-Q学习算法协同学习,通过使智能体达到纳什均衡来求解问题。在多个真实图数据集上进行的大量实验表明,在模型质量方面具有显著且一致的性能改进和良好的泛化能力。

 

内容中包含的图片若涉及版权问题,请及时与我们联系删除