1954年,Alston S. Householder发表了《数值分析原理》,这是矩阵分解的第一个现代处理方法,它支持(块)LU分解——将矩阵分解为上三角矩阵和下三角矩阵的乘积。而现在,矩阵分解已经成为机器学习的核心技术,这在很大程度上是因为反向传播算法在拟合神经网络方面的发展。本调研的唯一目的是对数值线性代数和矩阵分析中的概念和数学工具进行一个完整的介绍,以便在后续章节中无缝地介绍矩阵分解技术及其应用。然而,我们清楚地认识到,我们无法涵盖所有关于矩阵分解的有用和有趣的结果,并且给出了这种讨论的范围的缺乏,例如,分离分析欧几里德空间、厄米特空间、希尔伯特空间和复域中的东西。我们建议读者参考线性代数领域的文献,以获得相关领域的更详细介绍。本综述主要是对矩阵分解方法的目的、意义,以及这些方法的起源和复杂性进行了总结,并阐明了它们的现代应用。最重要的是,本文为分解算法的大多数计算提供了改进的过程,这可能会降低它们所引起的复杂性。同样,这是一个基于分解的上下文,因此我们将在需要和必要时介绍相关的背景。在其他许多关于线性代数的教科书中,主要思想被讨论,而矩阵分解方法是“副产品”。然而,我们将重点放在分解方法上,而主要思想将作为分解方法的基本工具。数学的先决条件是线性代数的第一门课程。除了这个适中的背景,发展是独立的,提供了严格的证据。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢