深度学习在推荐系统中如何发挥作用是一个重要的问题。最近来自Netflix的文章详细阐述了这一点指出:在建模用户物品交互方面,深度学习相比传统基线方法并无太大优势,而对于异质特征的表示融入深度学习则具有很好建模性能。具体深入阅读这篇论文。

深度学习深刻地影响了机器学习的许多领域。然而,在推荐系统领域,它的影响需要一段时间才能感受到。在本文中,我们概述了在Netflix的推荐系统中使用深度学习所遇到的一些挑战和经验教训。我们首先概述了Netflix服务上的各种推荐任务。我们发现不同的模型架构擅长于不同的任务。尽管许多深度学习模型可以被理解为现有(简单)推荐算法的扩展,但我们最初并没有发现在性能上有显著的改善。只有当我们在输入数据中添加了大量异构类型的特征时,深度学习模型才开始在我们的设置中崭露头角。我们还观察到,深度学习方法可能会加剧离线-在线度量(错误)对齐的问题。在解决了这些挑战之后,深度学习最终使我们的推荐在线下和线上都得到了很大的改进。在实践方面,将深度学习工具箱集成到我们的系统中,可以更快更容易地实现和试验各种推荐任务的深度学习和非深度学习方法。我们总结了一些可以推广到Netflix之外的其他应用的经验,以此来总结这篇文章。

 

内容中包含的图片若涉及版权问题,请及时与我们联系删除