随着高性能计算 (HPC) 的出现,促使计算生物学成为不断创新和加速成熟的科学学科。近年来,机器学习领域也从 HPC 的实践应用中受益匪浅。
研究人员使用 ORNL 的 Summit 超级计算机以及 Google 的 DeepMind 和乔治亚理工学院开发的工具,以加快准确识别生物体整个基因组中蛋白质结构和功能的速度。该团队最近发布了高性能计算工具包及其在 Summit 上的部署的详细信息。
他们提出了一种新的 HPC 方案,它结合了各种机器学习方法,用于在全基因组规模上,基于结构对蛋白质进行功能注释。
该方案广泛使用深度学习,并为针对蛋白质组学数据等高通量数据训练高级深度学习模型的最佳实践提供计算见解。研究人员展示了该方案目前支持的方法,并详细介绍了该方案的未来任务,包括使用 SAdLSA 进行大规模序列比较和使用 AlphaFold2 预测蛋白质三级结构。
该研究以「High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function」为题,于 2021 年 11 月 15 日在《2021 IEEE/ACM 高性能计算环境中的机器学习研讨会 (MLHPC)》上发布,于 2021 年 12 月 27 日添加在《IEEE Xplore》。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢