在许多场景中我们都需要模型学习到排序的能力,比如网页搜索场景下我们需要根据搜索词和文档的相关度做排序,把更相关的文章排到前面,此时文章的相关度就是要排序的目标。又比如在视频推荐场景下,粗排的目标往往是学习精排,把精排认为更好的文章送入精排打分,此时视频的精排打分就是要排序的目标。Learn to Rank(LTR)要做的就是输入一批候选(上文中的网页或者视频),算法能够给出一种排序,使得这种排序最优秀。

本文介绍 LTR 中经典的三种算法:RankNet、LambdaRank、LambdaMart,并介绍他们的关联。

内容中包含的图片若涉及版权问题,请及时与我们联系删除