本次介绍一篇由清华大学计算机系孙茂松团队发表于nature communications,名为《A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals》的论文。该论文通讯作者为计算机系党委副书记刘知远副教授与孙茂松教授,第一作者为计算机系博士生曾哲妮与姚远。该研究由国家重点研发计划与清华大学国强研究院提供支持。
为了加速生物医学研究过程,人们开发了深度学习系统,其通过阅读大规模的生物医学数据,来自动获取分子实体的知识。受到人类通过多种方式阅读分子结构和生物医学文本信息来学习深度分子知识的启发,论文作者提出了一个知识丰富的机器阅读系统,该系统将这两种类型的信息连接在一个统一的深度学习框架中,为生物医学研究提供全面的帮助。他们解决了现有的机器阅读模型只能分别处理不同类型数据的问题,从而实现了对分子实体的全面深入的理解。通过在不同信息来源中以无监督的方式抓取元知识,他们的系统可以促进各种现实世界生物医学应用,包括分子性质预测,生物医学关系提取等。实验结果表明,该系统在分子性质理解能力方面甚至超过了人类专业人员,并显示了其在未来药物自动发现和文档化方面的潜力。
数据:https://drive.google.com/drive/folders/1xig3-3JG63kR-Xqj1b9wkPEdxtfD_4IX
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢