对比学习的主要思想是相似的样本的表示相近,而不相似的远离。对比学习可以应用于监督和无监督的场景下,并且目前在CV、NLP等领域中取得了较好的性能。
对比学习在NLP领域中的应用
1、A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation
2、CERT:Contrastive Self-supervised Learning for Language Understanding
3、SimCSE: Simple Contrastive Learning of Sentence Embeddings(EMNLP2021)
4、ESimCSE: Enhanced Sample Building Method for Contrastive Learning of Unsupervised Sentence Embedding
对比学习在多模态领域中的应用
1、Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision (ICML 2021)
2、Align before Fuse: Vision and Language Representation Learning with Momentum Distillation (NeurIPS 2021)
3、VLMO: Unified Vision-Language Pre-Training with Mixture-of-Modality-Experts
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢