时序数据的异常检测是高端装备行业的关键问题,清华大学软件学院机器学习实验室从全新的关联差异视角分析此问题,从模型、训练策略、异常判据全链路提供了完整的解决方法,被ICLR2022接收为Spotlight(亮点)文章。

论文链接:
https://openreview.net/forum?id=LzQQ89U1qm_
从时间序列的本质属性出发,我们发现每一个时间点都可以由其与整个序列的关联关系来表示,即表示为其在时间维度上的关联权重分布。相比于点级别的特征,这种关联关系暗含了序列的模式信息,比如周期、趋势等,因此更具信息含量。
同时,与正常点相比较,异常点很难与正常模式主导的整个序列都建立强关联关系,它们往往更加关注邻近区域(由于连续性)。因此,这种与整体序列、邻近先验之间的关联差异,为异常检测提供了一个天然的、强区分度的判据。
基于以上观察,我们提出了Anomaly Transformer模型,实现了基于关联差异(Association Discrepancy)的时序异常检测。其包含Anomaly-Attention机制用于分别建模两种形式的关联,同时以极小极大(Minimax)关联学习策略进一步增大正常点与异常点之间差别。
值得一提的是,在不同领域的5个数据集上,Anomaly Transformer都取得了SOTA的效果。
 

内容中包含的图片若涉及版权问题,请及时与我们联系删除