论文链接:https://www.nature.com/articles/s41586-022-04506-6

 

摘要:近日,来自麻省理工学院和哈佛大学博德研究所等机构的研究者开发了一种新框架来研究调控 DNA 的适应度地形。该研究利用在数亿次实验测量结果上进行训练的神经网络模型,预测酵母菌 DNA 中非编码序列的变化及其对基因表达的影响,登上了最新一期《自然》杂志的封面。

 

该研究还设计了一种以二维方式表示适应度地形的独特方式,使其对于酵母以外的其他生物也能够理解已有的实验结果并预测非编码序列的未来演变,甚至有望为基因治疗和工业应用设计自定义的基因表达模式。

 

麻省理工学院研究生 Eeshit Dhaval Vaishnav、哥伦比亚大学助理教授 Carl de Boer(论文共同一作)等人创建了一个神经网络模型来预测基因表达。他们在一个数据集上训练模型,并观察每个随机序列如何影响基因表达,该数据集是通过将数百万个完全随机的非编码 DNA 序列插入酵母菌中生成的。他们专注于非编码 DNA 序列的一个特定子集——启动子,它是蛋白质的结合位点,可以打开或关闭附近的基因。

 

首先,为了确定他们的模型是否有助于合成生物学应用,如生产抗生素、酶和食物,研究人员使用它来设计能够为任何感兴趣的基因产生所需表达水平的启动子。然后,他们查阅了其他的科学论文,以确定基本的演化问题,看看他们的模型能否帮助解答这些问题。该团队甚至还从一项现有研究中获取了真实世界的种群数据集,其中包含了世界各地酵母菌株的遗传信息。通过这些方法,他们能够描绘出过去数千年的选择压力,这种压力塑造了今天的酵母基因组。

 

但是,为了创造一个可以探测所有基因组的强大工具,研究人员需要找到一种方法,在没有这样一个全面的种群数据集的情况下预测非编码序列的进化。为了实现这一目标,Vaishnav 和他的同事们设计了一种计算方法,允许他们将来自框架的预测绘制到二维图上。这帮助他们以非常简单的方式展示了任何非编码 DNA 序列如何影响基因表达和适应度,而无需在实验室工作台进行任何耗时的实验。

内容中包含的图片若涉及版权问题,请及时与我们联系删除