论文链接:https://arxiv.org/abs/2203.01923
从单目图像中估计人体的姿势和形状是计算机视觉领域中一个长期存在的问题。自统计学人体模型发布以来,三维人体网格恢复一直受到广泛关注。为了获得有序的、符合物理规律的网格数据而开发了两种范式,以克服从二维到三维提升过程中的挑战:i)基于优化的范式,利用不同的数据项和正则化项作为优化目标;ii)基于回归的范式,采用深度学习技术以端到端的方式解决问题。同时,不断提高各种数据集的3D网格标签的质量。尽管在过去十年中,该研究取得了显著的进展,但由于肢体动作灵活、外观多样、环境复杂以及人工注释不足,这项任务仍然具有挑战性。据调查,这是第一次关注单目3D人体网格恢复任务的研究。我们从介绍人体模型开始,通过深入分析其优缺点详细阐述了恢复框架和训练目标。我们还总结了数据集、评估指标和基准测试结果。最后讨论了有待解决的问题和未来的发展方向,旨在激发研究人员的积极性,促进各位学者在这一领域的研究。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢