情报分析是一项重要工作,军事战略家、研究人员和记者,都依赖情报分析来作出决策、揭露违反国际协议的行为,并向公众展示战争的严酷现实。卫星图像在情报分析工作中扮演了重要的信息来源角色。

 

然而,在乌克兰,由于大量的云层覆盖和频繁的夜间袭击,各种形式的卫星图像都无法捕捉地面信息。好消息是,合成孔径雷达(Synthetic Aperture Radar,SAR)图像可以穿透云层,但是需要经过专门培训的人员来对其图像进行解读,如能将这项繁琐的任务自动化,便可以实现实时动态观察。而目前基于典型RGB图像开发的计算机视觉方法尚不能很好地解读SAR图像。

 

因此,相关研究者认为,当下改进针对SAR图像的方法、代码库、数据集和预训练模型的获取和可用性,将有助于乌克兰情报机构、研究人员和记者的工作。

 

近日,伯克利人工智能研究中心发布了一项新研究,旨在解决SAR图像的使用受限问题。Ritwik Gupta、Colorado Reed、Anja Rohrbach和Trevor Darrell等人提出一种基线方法和预训练模型,能够使人们在做下游分类、语义分割和改变检测等任务时,方便地互换使用RGB和SAR图像。

图1: SEVIRI仪器于2022年2月28日-3月1日在乌克兰上空测量的气团(云层)。来源:EUMETSAT

图8: 上方为MAERS学习联合表示过程的可视化,下方为一个编码器,可用于执行下游任务,比如用RGB或SAR或RGB+ SAR模型进行对象检测。

 

目前这项研究只得出了初步结果,但仍显示出了很强的说服力。研究人员表示,他们将向人道主义伙伴提供研究模型,帮助他们对居民区和其他平民区进行环境变化检测,以更好地揭示入侵者在乌克兰犯下的战争罪行。

 

当前,人道主义组织正密切关注着乌克兰的战争,这些模型将有助于提高人道主义工作的效率。不过,与任何其它技术一样,我们需要警惕技术被不恰当地滥用。研究人员考虑到了这一点,他们在设计模型时,参考了在人道主义背景下进行情报和图像分析的人员所提供的意见,将他们的想法、评论和批评纳入考虑,从而提供了一种符合人类利益的工具,并在使用安全方面加上了一把锁。

 

原文链接:

https://bair.berkeley.edu/blog/?refresh=1

内容中包含的图片若涉及版权问题,请及时与我们联系删除