浙江大学智能创新药物研究院&药学院侯廷军教授团队、武汉大学陈曦团队、中南大学曹东升团队和腾讯量子实验室联合在《自然·机器智能》(Nature Machine Intelligence)发表论文“Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning”,提出了一种多约束分子生成新方法MCMG,该方法可以高效地遍历复杂的化学空间以寻找满足多种性质约束的新型化合物,为先导结构的发现提供了功能强大的计算工具。
论文链接:
https://www.nature.com/articles/s42256-021-00403-1
为了通过预处理生成模型而不影响其在多约束任务中输出多样性的同时,并提高分子生成模型输出所需分子的效率,作者将Transformer、知识蒸馏(knowledge distillation)和RL结合提出了MCMG方法,并在平衡分子生成模型的收敛速度和输出多样性的挑战性问题上取得了实质性的进展。该方法首先使用条件Transformer(c-Transformer)来构建生成模型;然后,采用知识蒸馏模型来降低模型的复杂度,并提升生成分子的多样性;最后,通过RL对其进行微调。c-Transformer用于通过有效学习并将构效关系合并到有偏差的生成过程中来训练分子生成模型;知识蒸馏模型可降低模型的复杂性,便于通过RL对其进行微调,并增强生成分子的结构多样性。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢