MNIST 识别的准确率已经卷上 100% 了?近日,预印版平台 arXiv 中的一篇论文《Learning with Signatures》引起了人们的关注。

在这项工作中,作者研究了在学习环境中使用 Signature Transform。该论文提出了一个监督框架,使用很少的标签提供了最先进的分类准确性,无需信用分配(credit assignment),几乎没有过拟合。作者通过使用 Signature 和对数 Signature 来利用谐波分析工具,并将其用作评分函数 RMSE 和 MAE Signature 和对数 Signature。
研究人员使用一个封闭式方程来计算可能的最佳比例因子。最终实现的分类结果在 CPU 上的执行速度比其他方法快几个数量级。作者报告了在 AFHQ 数据集、Four Shapes、MNIST 和 CIFAR10 的结果,在所有任务上都实现了 100% 的准确率。

论文链接:

https://arxiv.org/abs/2204.07953v1

代码:

https://github.com/decurtoydiaz/learning_with_signatures

 

内容中包含的图片若涉及版权问题,请及时与我们联系删除