NLP (自然语言处理) 技术的深入发展主要有两条路线,第一个是基于符号规则的深度解析模型,第二个是基于神经的深度学习预训练模型。今天分享的内容是从领域落地的角度,对上述两条路线进行介绍和对比。首先,从人工智能的历史和发展现状来谈谈两种不同方法的异同及其互补作用。值得注意的是,两种方法殊途同归,基础模型及其架构也越来越趋向于平行和一致:都是多层架构、数据驱动,赋能下游NLP落地。最后我们会强调当前领域内的低代码趋势,并介绍金融领域深度解析路线落地应用场景的相关实践。

今天的介绍主要围绕下面四点展开:

  • NLP历史和现状

  • 殊途同归的符号与神经

  • 低代码是趋势,也是王道

  • NLP“半自动驾驶”实践

内容中包含的图片若涉及版权问题,请及时与我们联系删除