本文分享一篇近期超分辨率的最新文献综述『Generative Adversarial Networks for Image Super-Resolution: A Survey』。通过对 193 篇相关文献进行全面调研,从它们的性能、优点、缺点、复杂性、挑战和潜在的研究点等进行讨论。
具体信息如下:
论文作者:田春伟,张璇昱,林浚玮,左旺孟,张艳宁
通讯单位:西北工业大学、空天地海一体化大数据应用技术国家工程实验室、西挪威应用科学大学、哈尔滨工业大学和鹏城实验室
论文链接:http://arxiv.org/abs/2204.13620
01 摘要
单幅图像超分辨已经在图像处理领域扮演一个重要的角色。最近的生成对抗网络(Generative adversarial networks, GANs)在小样本的低分辨率图像上获得了出色的表现。然而,目前有较少的不同GANs在图像超分辨上的总结。在本文中,从不同角度来总结了GANs在图像超分辨应用。
首先,介绍GANs的发展。其次,从大小样本两方面介绍流行的GANs在图像上应用的方法。然后,分析基于优化方法和判别学习方法在图像超分辨应用上以有监督、半监督和无监督训练GANs的动机、实现和区别。
接着,比较这些GANs方法就定性和定量分析上的图像超分辨的性能。最后,给出GANs在图像超分辨上的挑战和潜在研究点。本文的框架图如图1 所示:
图1 本文的框架图
第一章引言中提到的GAN相关模型总结详见表1:
表 1 引言中的GANs总结
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢