论文地址:https://arxiv.org/pdf/2205.01380.pdf
随着遥感(RS)技术的飞速发展,大量具有复杂的异质的地观(EO)数据的出现,使得研究人员有机会以一种全新的方式处理当前的地球科学应用。近年来,随着地观数据的联合利用,多模态遥感数据融合的研究取得了巨大的进展,但由于缺乏对这些强异构数据的综合分析和解释能力,这些已开发的传统算法不可避免地遇到了性能瓶颈。因此,这一不可忽视的局限性进一步引发了对具有强大加工能力的替代工具的强烈需求。深度学习(Deep learning, DL)作为一项前沿技术,凭借其出色的数据表示和重构能力,在众多计算机视觉任务中取得了显著的突破。自然,该方法已成功应用于多模态遥感数据融合领域,与传统方法相比有了很大的改进。本研究旨在对基于深度学习的多模态遥感数据融合进行系统的综述。更具体地说,首先给出了关于这个主题的一些基本知识。随后,通过文献调研分析了该领域的发展趋势。从拟融合数据模态的角度,综述了多模态遥感数据融合中的一些流行子领域,即空间光谱、时空、光探测和测距光学。从融合数据模态的角度,综述了多模态遥感数据融合的几个子领域,即空间光谱、时空、光探测与测距-光学、合成孔径雷达-光学、RS-地理空间大数据融合。在此基础上,对多模态遥感数据融合技术的发展进行了有益的总结。最后,强调了剩余的挑战和潜在的未来方向。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢