第21届智能体及多智能体系统国际会议(International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS-2020)近日在线举行。智能体及多智能体系统国际会议(AAMAS) 是多智能体系统领域最具影响力的会议之一,由非营利组织IFAAMAS主办。来自佐治亚理工大学Matthew Gombolay和Zheyuan Wang共同讲述了图神经网络解决多机器人协调问题的能力,非常值得关注!

PPT链接:https://core-robotics.gatech.edu/files/2022/05/GNN_Tutorial.pdf
机器人队越来越多地部署在生产设施和仓库等环境中,以节省成本和提高生产率。为了有效地协调多机器人队,快速、高质量的调度算法必须满足动态任务规范、部件和机器人可用性在时间和空间上的约束。传统的解决方案包括精确的方法,这对于大规模问题是棘手的,或者特定应用的启发式,这需要专业的领域知识。迫切需要的是一种新的自动化方法,它可以自动学习轻量级的、特定于应用的协调策略,而不需要手工设计的特征。
本教程介绍了图神经网络,并展示了图神经网络解决多机器人协调问题的能力。本文综述了近年来各种图神经网络的框架,重点讨论了它们在多智能体系统建模中的应用。我们将介绍多机器人协调(MRC)问题,并回顾解决MRC问题最相关的方法。我们将讨论图神经网络在MRC问题中的几个成功应用,并以Python示例代码的形式提供实践教程。通过本教程,我们旨在提供使用图神经网络建模多机器人系统的经验,从算法开发到代码实现,从而为在更广泛的多智能体研究中设计基于图的学习算法打开未来的机会。内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢