如果你在一家大厂做出了一份行业里程碑式的研究,那么接下来的职场生涯你会怎么走?继续留在这家大厂?换一家待遇更好的大厂?还是创业或加入有前景的创业公司?
Transformer(出自论文《Attention Is All You Need》)几位作者的选择或许有一定的代表性:其中六人选择创业或加入创业公司,只有一人选择继续留在谷歌,还有一位去了 OpenAI。
图片
这篇重要论文发表于 2017 年,如今引用量已经突破 41000。论文注释中写道,几位作者对这份研究做出了不同但同等重要的贡献(排名随机)。具体来说,他们的分工可以概括为:
  • Jakob 提出用自注意力替代 RNN,并开始努力尝试这一想法;

  • Ashish 和 Illia 一起设计并实现了第一批 Transformer 模型,并重度参与了 Transformer 架构的各方面工作;

  • Noam 提出了缩放点积注意力、多头注意力和无参数位置表示,并成为几乎每一个细节的参与者;

  • Niki 在原始代码库和 tensor2tensor 中设计、实现、调优和评估了无数的模型变量;

  • Llion 还尝试了新的模型变体,负责初始代码库以及高效的推理和可视化;

  • Lukasz 和 Aidan 花了无数天的时间来设计和实现 tensor2tensor 的各个部分,替换了早期的代码库,极大地改善了结果、加速了研究进度。

可以说,每位作者都有自己擅长的工作,对于行业也都有自己的预判。论文发表五年之后,他们都在做什么呢?本文调查发现,时隔五年,Transformer 的八位作者仅有一位还留在谷歌。

内容中包含的图片若涉及版权问题,请及时与我们联系删除