神经形态计算旨在通过模仿构成人脑的神经元和突触的机制来实现人工智能(AI)。受当前计算机无法提供的人脑认知功能的启发,神经形态设备已被广泛研究。
然而,目前基于互补金属氧化物半导体(CMOS)的神经形态电路,只是简单地连接人工神经元和突触而没有协同相互作用,而神经元和突触的同时实现仍然是一个挑战。
为了解决这些问题,由韩国科学技术高等研究院材料科学与工程系 Keon Jae Lee 教授领导的研究团队,通过在单个记忆单元中引入神经元-突触相互作用,来实现人类的生物学工作机制,代替了传统的电连接人工神经元和突触装置的方法。
论文标题:Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse
论文链接:https://www.nature.com/articles/s41467-022-30432-2
在这项最新研究中,研究人员报告了一种突触装置,该装置在单个单元中模拟突触和内在可塑性,此外,基于伴随神经可塑性的协同相互作用,建立了一个正反馈学习循环。最后,通过采用阈值开关相变存储器(TS-PCM)的伴随可塑性和反馈学习循环,成功实现了 4×4 模式的记忆和再训练。
这是一种纳米级的神经形态存储设备,它可以在一个单元中同时模拟神经元和突触,其中短期和长期记忆共存,使用分别模拟神经元和突触特征的易失性和非易失性记忆装置。阈值开关器件用作易失性存储器,相变存储器用作非易失性器件。两个薄膜器件集成在一起,没有中间电极,实现了神经形态记忆中神经元和突触的功能适应性。
图 | 由底部易失性和顶部非易失性存储层组成的神经形态存储设备,分别模拟神经元和突触特性(来源:KAIST)
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢