论文来源:
https://arxiv.org/abs/2205.00976

本文提出了一个用于推荐系统的知识图谱对比学习框架(KGCL),以减轻知识感知的推荐建模中的信息噪声。我们提出了一个基于知识图谱图增强的对比学习范式,以抑制信息聚合过程中的 KG 噪音,从而学习物品更稳健的知识感知表征,缓解 KG 的长尾与噪音问题。此外,我们利用来自 KG 增强过程的额外监督信号来指导跨视图的用户-物品图的对比学习,在对比的梯度中给予无偏的用户-物品交互更大的权重,并进一步缓解噪音问题对表征学习的损害。

内容中包含的图片若涉及版权问题,请及时与我们联系删除