首个大众可用PyTorch版AlphaFold2复现,哥大开源OpenFold,star量破千
刚刚,哥伦比亚大学系统生物学助理教授 Mohammed AlQuraishi 在推特上宣布,他们从头训练了一个名为 OpenFold 的模型,该模型是 AlphaFold2 的可训练 PyTorch 复现版本。Mohammed AlQuraishi 还表示,这是第一个大众可用的 AlphaFold2 复现。
AlphaFold2 可以周期性地以原子精度预测蛋白质结构,在技术上利用多序列对齐和深度学习算法设计,并结合关于蛋白质结构的物理和生物学知识提升了预测效果。它实现了 2/3 蛋白质结构预测的卓越成绩并在去年登上了《自然》杂志。更令人惊喜的是,DeepMind 团队不仅开源了模型,还将 AlphaFold2 预测数据做成了免费开放的数据集。
然而,开源并不意味着能用、好用。其实,AlphaFold2 软件系统的部署难度极大,并且对硬件的要求高、数据集下载周期长、占用空间大,每一条都让普通开发者望而却步。因此,开源社区一直在努力实现 AlphaFold2 的可用版本。
这次哥伦比亚大学 Mohammed AlQuraishi 教授等人实现的 OpenFold 总训练时间大约为 100000 A100 小时,但在大约 3000 小时内就达到了 90% 的准确率。
OpenFold 与原版 AlphaFold2 的准确率相当,甚至略胜一筹,可能因为 OpenFold 的训练集更大一点:
OpenFold 的主要优势是推理速度显著提升,对于较短的蛋白质序列,OpenFold 的推理速度可以达到 AlphaFold2 的两倍。另外,由于使用自定义的 CUDA 内核,OpenFold 使用更少的内存就能推理更长的蛋白质序列。
评论
沙发等你来抢