课程地址:https://www.cs.ubc.ca/~schmidtm/Courses/340-F19/
这是Mark Schmidt在UBC教机器学习的各种课程的课程材料的集合,包括100多个讲座的材料,涵盖了大量与机器学习相关的主题。
目录如下:
Part 1: Computer Science 340
1. Supervised Learning
-
Overview
-
Exploratory Data Analysis
-
Decision Trees (Notes on Big-O Notation)
-
Fundamentals of Learning (Notation Guide)
-
Probabilistic Classifiers (Probability Slides, Notes on Probability)
-
Non-Parametric Models
-
Ensemble Methods
2. Unsupervised Learning
-
Clustering
-
More Clustering
-
Outlier Detection
-
Finding Similar Items
3. Linear Models
-
Least Squares (Notes on Calculus, Notes on Linear Algebra, Notes on Linear/Quadratic Gradients)
-
Nonlinear Regression
-
Gradient Descent
-
Robust Regression
-
Feature Selection
-
Regularization
-
More Regularization
-
Linear Classifiers
-
More Linear Classifiers
-
Feature Engineering
-
Convolutions
-
Kernel Methods
-
Stochastic Gradient
-
Boosting
-
MLE and MAP (Notes on Max and Argmax)
4. Latent-Factor Models
-
Principal Component Analysis
-
More PCA
-
Sparse Matrix Factorization
-
Recommender Systems
-
Nonlinear Dimensionality Reduction
5. Deep Learning
-
Deep Learning
-
More Deep Learning
-
Convolutional Neural Networks
-
More CNNs
Part 2: Data Science 573 and 575
-
Structure Learning
-
Sequence Mining
-
Tensor Basics
-
Semi-Supervised Learning
-
PageRank
Part 3: Computer Science 440
A. Binary Random Variables
-
Binary Density Estimation
-
Bernoulli Distribution
-
MAP Estimation
-
Generative Classifiers
-
Discriminative Classifiers
-
Neural Networks
-
Double Descent Curves
-
Automatic Differentiation
-
Convolutional Neural Networks
-
Autoencoders
-
Fully-Convolutional Networks
B. Categorical Random Variables
-
Monte Carlo Approximation
-
Conjugate Priors
-
Bayesian Learning
-
Empirical Bayes
-
Multi-Class Classification
-
What do we learn?
-
Recurrent Neural Networks
-
Long Short Term Memory
-
Attention and Transformers
C. Gaussian Random Variables
-
Univariate Gaussian
-
Multivariate Gaussian (Motivation)
-
Multivairate Gaussian (Definition)
-
Learning Gaussians
-
Bayesian Linear Regression
-
End to End Learning
-
Exponential Family
D. Markov Models
-
Markov Chains
-
Learning Markov Chains
-
Message Passing
-
Markov Chain Monte Carlo
-
Directed Acyclic Graphical Models
-
Learning Graphical Models
-
Log-Linear Models
E. Latent-Variable Models
-
Mixture Models
-
EM and KDE (Notes on EM)
-
HMMs and RBMs (Forward-Backward for HMMs)
-
Topic Models and Variational Inference
-
VAEs and GANs
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢