论文:https://arxiv.org/abs/2207.02696
代码:https://github.com/WongKinYiu/yolov7

YOLOv7 在 5 FPS 到 160 FPS 范围内的速度和准确度都超过了所有已知的目标检测器,并且在 GPU V100 上 30 FPS 或更高的所有已知实时目标检测器中具有最高的准确度 56.8% AP。

YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于Transformer的检测器 SWIN-L Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)的速度和准确度分别高出 509% 和 2%,并且比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度提高 551%,准确率提高 0.7%,以及 YOLOv7 的表现还优于:YOLOR、YOLOX、Scaled-YOLOv4、YOLOv5、 DETR、Deformable DETR、DINO-5scale-R50、ViT-Adapter-B 和许多其他速度和准确度的目标检测器。此外,只在 MS COCO 数据集上从零开始训练 YOLOv7,而不使用任何其他数据集或预训练的权重。

 

1模型设计

1.1、扩展的高效层聚合网络

在大多数关于设计高效架构的文献中,主要考虑因素不超过参数的数量、计算量和计算密度。Ma 等人还从内存访问成本的特点出发,分析了输入/输出通道比、架构的分支数量以及 element-wise 操作对网络推理速度的影响。多尔阿尔等人在执行模型缩放时还考虑了激活,即更多地考虑卷积层输出张量中的元素数量。

图 2

  • 图 2(b)中 CSPVoVNet 的设计是 VoVNet 的一种变体。CSPVoVNet 的架构除了考虑上述基本设计问题外,还分析了梯度路径,以使不同层的权重能够学习到更多样化的特征。上述梯度分析方法使推理更快、更准确。
  • 图 2 (c) 中的 ELAN 考虑了以下设计策略——“如何设计一个高效的网络?”。他们得出了一个结论:通过控制最短最长的梯度路径,更深的网络可以有效地学习和收敛。

在本文中,作者提出了基于 ELAN 的Extended-ELAN (E-ELAN),其主要架构如图 2(d)所示。

无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。作者提出的E-ELAN使用expand、shuffle、merge cardinality来实现在不破坏原有梯度路径的情况下不断增强网络学习能力的能力。

在架构方面,E-ELAN 只改变了计算块的架构,而过渡层的架构完全没有改变。策略是使用组卷积来扩展计算块的通道和基数。将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数g被打乱成g个组,然后将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,添加 g 组特征图来执行合并基数。 E-ELAN除了保持原有的ELAN设计架构外,还可以引导不同组的计算块学习更多样化的特征。

1.2、基于concatenate模型的模型缩放

模型缩放的主要目的是调整模型的一些属性,生成不同尺度的模型,以满足不同推理速度的需求。例如,EfficientNet的缩放模型考虑了宽度、深度和分辨率。对于Scale-yolov4,其缩放模型是调整阶段数。Doll‘ar等人分析了卷积和群卷积对参数量和计算量的影响,并据此设计了相应的模型缩放方法。

图3

上述方法主要用于诸如PlainNet或ResNet等架构中。当这些架构在执行放大或缩小过程时,每一层的in-degree和out-degree都不会发生变化,因此可以独立分析每个缩放因子对参数量和计算量的影响。然而,如果这些方法应用于基于concatenate的架构时会发现当扩大或缩小执行深度,基于concatenate的转换层计算块将减少或增加,如图3(a)和(b).所示

从上述现象可以推断,对于基于concatenate的模型不能单独分析不同的缩放因子,而必须一起考虑。以scaling-up depth为例,这样的动作会导致transition layer的输入通道和输出通道的比例发生变化,这可能会导致模型的硬件使用率下降。

因此,必须为基于concatenate的模型提出相应的复合模型缩放方法。当缩放一个计算块的深度因子时,还必须计算该块的输出通道的变化。然后,将对过渡层进行等量变化的宽度因子缩放,结果如图3(c)所示。本文提出的复合缩放方法可以保持模型在初始设计时的特性并保持最佳结构。

内容中包含的图片若涉及版权问题,请及时与我们联系删除