在今年的 SIGGRAPH 2022 会议上,来自浙江大学、快手和美国犹他大学的研究人员联合发表了一篇题为《物理仿真的自动量化》的论文,提出了一种自动兼顾量化仿真精度和内存消耗的方法。与全精度的物理仿真相比,能够在视觉效果不受明显影响的前提下,节省 50% 以上的内存占用,从而大幅度提高了量化仿真的易用性和生产力。
该方法的核心思想,是将物理仿真过程中由量化引起的精度损失建模为误差的传播过程,基于不确定性传播理论,将量化方案的自动求解问题描述为带约束的优化问题,将误差上限或者内存压缩率作为优化目标,并快速给出解析解作为可行的量化方案。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢