人工智能(AI)的最新进展与当今临床系统产生的大量数据相结合,促进了影像AI解决方案的发展,它贯穿了医学影像的整个价值链,包括图像重建、医学图像分割、基于图像的诊断和治疗计划。尽管人工智能在医学影像领域取得了成功并具有巨大潜力,但许多利益相关者对影像人工智能解决方案的潜在风险和道德影响感到担忧,认为其复杂、不透明,在关键的临床应用中难以理解、利用和信任。尽管有这些担忧和风险,但目前还没有具体的指导方针和最佳做法来指导未来医学影像领域的人工智能发展,以提高信任度、安全性和采用率。为了弥合这一差距,本文介绍了从欧洲五个大型健康影像人工智能项目积累的经验、共识和最佳实践中精心挑选出来的指导原则。这些指导原则被命名为FUTURE-AI,其组成部分包括(i)公平性,(ii)普遍性,(iii)可追溯性,(iv)可用性,(v)稳健性和(vi)可解释性。在一个循序渐进的方法中,这些准则被进一步转化为一个具体的建议框架,用于指定、开发、评估和部署技术上、临床上和道德上值得信赖的人工智能解决方案到临床实践中。

论文链接:

https://arxiv.org/abs/2109.09658

 

内容中包含的图片若涉及版权问题,请及时与我们联系删除