联邦学习(FL)是一种分布式机器学习方案,通过协作训练解决数据孤岛问题。它使参与者(即客户)能够在不共享其私有数据的情况下联合训练机器学习模型。因此,将 FL 与图机器学习相结合成为解决上述问题的有希望的解决方案。

论文地址:https://arxiv.org/pdf/2207.11812.pdf

本文中,来自弗吉尼亚大学的研究者提出联邦图机器学习(FGML,Federated Graph Machine Learning)。这里对文章的主要结构做下简介。第 2 节简要介绍了图机器学习中的定义以及 FGML 中两种设置的概念和挑战。第 3 节和第 4 节回顾了这两种设置中的主流技术。第 5 节进一步探讨了 FGML 在现实世界中的应用。第 6 节介绍了相关 FGML 论文中使用的开放图数据集和 FGML 的两个平台。在第 7 节中提供了未来可能的发展方向。最后第 8 节对全文进行了总结。