YOLOAir 算法代码库是一个基于 PyTorch 的 YOLO 系列目标检测开源工具箱。使用统一模型代码框架、统一应用方式、统一调参,该库包含大量的改进模块,可使用不同网络模块来快速构建不同网络的检测模型。基于 YOLOv5 代码框架,并同步适配 YOLOv5(v6.0/v6.1 更新) 部署生态。用户在使用这个项目之前, 可以先了解 YOLOv5 库。

该项目包含大量的改进方式,并能降低改进难度,改进点包含 Backbone、Neck、Head、注意力机制、IoU 损失函数、多种 NMS、Loss 损失函数、自注意力机制系列、数据增强部分、激活函数等部分,更多内容可以关注 YOLOAir 项目的说明文档。项目同时附带各种改进点原理及对应的代码改进方式教程,用户可根据自身情况快速排列组合,在不同的数据集上实验, 应用组合改进点写论文!
模块组件化:帮助用户自定义快速组合 Backbone、Neck、Head,使得网络模型多样化,使得改进检测算法、工程算法部署落地更便捷,构建更强大的网络模型。
支持YOLOv5、YOLOv7、YOLOX、YOLOR、YOLOv3、YOLOv4、Scaled_YOLOv4、Transformer等算法网络模型进行改进。
项目地址:  https://github.com/iscyy/yoloair