论文链接:https://arxiv.org/pdf/2209.00796.pdf

扩散模型是一类具有丰富理论基础的深度生成模型,在各种任务中都取得了令人印象深刻的结果。尽管扩散模型比其他最先进的模型取得了令人印象深刻的质量和样本合成多样性,但它们仍然存在昂贵的采样程序和次优的似然估计。近年来,研究人员对扩散模型性能的改进表现出极大的热情。在这篇文章中,我们提出了扩散模型的现有变体的第一个全面的综述。具体地说,我们提供了扩散模型的第一个分类,并将它们的变体分为三种类型,即采样-加速增强、可能性-最大化增强和数据泛化增强。我们还详细介绍了其他五种生成模型(即变分自编码器、生成对抗网络、归一化流、自回归模型和基于能量的模型),并阐明扩散模型和这些生成模型之间的联系。然后对扩散模型的应用进行了深入的研究,包括计算机视觉、自然语言处理、波形信号处理、多模态建模、分子图生成、时间序列建模和对抗性纯化。此外,我们提出了关于发展这一生成模式的新观点。

内容中包含的图片若涉及版权问题,请及时与我们联系删除