扩散模型是近年来快速发展并得到广泛关注的生成模型。它通过一系列的加噪和去噪过程,在复杂的图像分布和高斯分布之间建立联系,使得模型最终能将随机采样的高斯噪声逐步去噪得到一张图像。来自西湖大学李子青等学者发布了关于《扩散模型》综述论文,对扩散模型的现状进行详细的综述。通过对改进算法和在其他领域的应用进行分类。值得关注!
由于深度潜在表示,深度学习在生成任务中显示出巨大的潜力。生成模型是一类可以根据某些隐含参数随机生成观察结果的模型。近年来,扩散模型以其强大的生成能力成为生成模型的一个新兴门类。如今,已经取得了巨大的成就。除了计算机视觉、语音生成、生物信息学和自然语言处理外,该领域还将探索更多的应用。然而,扩散模型有其生成过程缓慢的天然缺陷,导致许多改进的工作。本文对扩散模型的研究领域进行了综述。我们首先阐述两项标志性工作的主要问题,DDPM及DSM。然后,我们提出了一系列先进的技术来加速扩散模型——训练计划、无训练采样、混合建模以及得分与扩散的统一。对于现有的模型,我们还根据具体的NFE提供了FID score, IS, NLL的基准。此外,还介绍了扩散模型的应用,包括计算机视觉、序列建模、音频、科学人工智能等。最后,对该领域的研究现状进行了总结,指出了研究的局限性和进一步的研究方向。
论文链接:https://arxiv.org/pdf/2209.02646.pdf
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢