OpenMMLab 首次发布于 2018 年,当时算法开源还没有蔚然成风,复现靠运气,对比凭人品,PyTorch 生态也远不足以抗衡 TensorFlow。模块化设计、算法支持丰富的检测算法库 MMDetection 的出现,为这个研究领域带来了新的气息。自此之后,越来越多的标准化算法工具箱涌现出来,开源也逐渐成为研究者们理所当然的事情。从 2018 年到 2021 年,OpenMMLab 也不断推出新的算法框架,覆盖更多的研究领域和算法,从一枝独秀到百花齐放,形成了 OpenMMLab 1.0 版本。代码质量和易用性始终是我们关注的重点,形成了良好的开发体验和口碑,被全球 100 多个国家和地区的开发者使用。
经过一年的潜心研发,OpenMMLab 2.0 正式亮相。我们发布了新一代训练架构 MMEngine,以统一的执行引擎,灵活支持了各算法库中 20 个以上的计算机视觉任务和半监督、自监督等丰富的训练流程。在此基础上,OpenMMLab 2.0 还新增了 MMRotate,MMFewshot,MMFlow,MMHuman3D,MMSelfSup,MMRazor 六个算法库和 MMDeploy 模型部署框架,实现了从模型训练、部署到推理的无缝衔接,打通了 AI 落地的最后一公里。OpenMMLab 2.0 还对训练和推理芯片进行了广泛适配,并在新一代核心架构设计之初就将多训练芯片的支持纳入考量,促进了国产软硬件生态共同发展。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢