PPT链接:https://github.com/cmu-mlsp/Interspeech-Tutorial-2022-Learning_from_weak_labels
训练各种精确音频分类器的关键瓶颈之一是需要“强标记”的训练数据,这些数据提供要识别的音频事件的精确划分实例。然而,这种数据很难获得,特别是大量的数据。另一种更受欢迎的方法是使用“弱”标记数据来训练模型,这种数据包括只标记声音类别存在或不存在的录音,而不添加关于声音出现次数或它们在录音中的位置的额外细节。弱标记的数据比强标记的数据更容易获得;然而,使用这些数据进行培训也面临许多挑战。在本教程中,我们将讨论从弱标签数据中训练音频(和其他)分类器的问题,包括几种最先进的形式,它们的限制和局限性,以及未来的研究领域。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢