论文链接:https://link.springer.com/article/10.1007/s11263-022-01633-5
本文提出了一个图像去模糊方向的综述,来自澳大利亚国立大学、中山大学、美国加州大学 Merced 分校、日本乐天研究所的研究者回顾了基于深度学习的图像去模糊技术研究进展,回顾了图像去模糊的研究历史,总结了当前的研究进展,并进行了展望。该综述近期被计算机视觉旗舰期刊 International Journal of Computer Vision 接收。
图像去模糊是计算机底层视觉中的一个经典问题,它的目标是将输入的模糊图像中恢复成清晰的图像。近些年,基于深度学习的神经网络在该任务上取得了重大进展。本文对最近发表的基于深度学习的图像去模糊方法进行了全面的回顾,主要看点如下:
1. 阐述图像去模糊的研究背景,包括如何定义去模糊、模糊产生的原因、去模糊的方法、质量评估的指标、常见的数据集。
2. 讨论了近些年基于深度学习在图像去模糊领域中取得的进展,对当前的深度去模糊方法进行全面回顾。
3. 分析了当前图像去模糊存在的挑战以及未来的研究课题。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢