人类从与他人的互动中学习,而目前的人工智能却常常只能在与社会隔离的环境中学习。所以当我们把一个智能体放到真实世界中时,它会不可避免地在遇到大量新的数据,无法应对不断变化的新需求。
如何将智能体从只有一堆书的房间里「解放」出来,让它在广阔的社会情境中学习,是一个新的挑战。
最近,斯坦福大学计算机系的 Ranjay Krishna、Donsuk Lee、李飞飞、Michael Bernstein 等人针对此问题提出了一种新的研究框架:
社会化人工智能(socially situated AI),即智能体通过在现实社会环境中与人的持续互动来学习。
论文“Socially situated artificial intelligence enables learning from human interaction”已发表在美国科学院院刊(PNAS)上。

论文地址:https://www.pnas.org/doi/epdf/10.1073/pnas.2115730119(opens new window)
在这项工作中,研究团队将社会化 AI 形式化为一个强化学习的过程,即智能体通过从社会互动中获取的奖励来学习识别有信息量的问题。在一个视觉问答任务的测试中,与其他智能体相比,社会化智能体识别新视觉信息的性能提高了 112%。
内容中包含的图片若涉及版权问题,请及时与我们联系删除


评论
沙发等你来抢